(本小题满分12分)已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点,过点P(2,1)的直线与椭圆C相交于不同的两点A、B.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
直线过点且斜率为>,将直线绕点按逆时针方向旋转45°得直线,若直线和分别与轴交于,两点.(1)用表示直线的斜率;(2)当为何值时,的面积最小?并求出面积最小时直线的方程.
已知平面直角坐标系中O是坐标原点,,圆是的外接圆,过点(2,6)的直线为。 (1)求圆的方程; (2)若与圆相切,求切线方程; (3)若被圆所截得的弦长为,求直线的方程。
已知直线:与直线:互相平行,经过点的直线与,垂直,且被,截得的线段长为,试求直线的方程.
一个圆的圆心在直线上,与直线相切,在上截得弦长为6,求该圆的方程.
设数列、满足,且. (1)求数列的通项公式; (2)对一切,证明成立; (3)记数列、的前项和分别是、,证明:.