(本小题满分12分)已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点,过点P(2,1)的直线与椭圆C相交于不同的两点A、B.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
如图,在△ABC中,∠B=90°,以AB为直径的圆O交AC于D,过点D作圆O的切线交BC于E,AE交圆O于点F.求证:(1)E是BC的中点;(2)AD·AC=AE·AF.
如图,圆O的直径AB=2,C是圆O外一点,AC交圆O于点E,BC交圆O于点D,已知AC=AB,BC=4,求△ADE的周长.
如图,在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N.若AC=AB,求证:BN=2AM.
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连结AD交圆O于点E,连结BE与AC交于点F.(1)判断BE是否平分∠ABC,并说明理由;(2)若AE=6,BE=8,求EF的长.
如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.(1)求证:△DEF∽△EFA;(2)如果FG=1,求EF的长.