如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.(1)求证:△DEF∽△EFA;(2)如果FG=1,求EF的长.
某市政府欲在如图所示的矩形的非农业用地中规划出一个休闲娱乐公园(如图中阴影部分),形状为直角梯形(线段和为两条底边),已知,,,其中曲线是以为顶点、为对称轴的抛物线的一部分. (1)以为原点,所在直线为轴建立直角坐标系,求曲线所在抛物线的方程; (2)求该公园的最大面积.
已知数列的前项和(). (1)令,求证:是等差数列; (2)令,求数列的前项和.
已知为等比数列,其前项和为,且(). (1)求的值及数列的通项公式; (2)设,设的前项和,求不等式的解集.
在中,角,,所对的边分别为,,,且满足. (1)若,求的面积; (2)若,求的最小值.
设函数. (1)若存在最大值,且,求的取值范围; (2)当时,试问方程是否有实数根,若有,求出所有实数根;若没有,请说明理由.