如图,定义在上的函数的图象为折线段.(1)求函数的解析式;(2)请用数形结合的方法求不等式的解集,不需要证明.
本题共有2个小题,第1小题满分6分,第2小题满分10分.某火山喷发停止后,为测量的需要,设距离喷口中心米内的圆环面为第区、米至米的圆环面为第区、……、第米至米的圆环面为第区,…,现测得第区火山灰平均每平方米为1000千克、第区每平方米的平均重量较第区减少、第区较第区又减少,以此类推,求:(1)离火山口1225米处的圆环面平均每平方米火山灰重量(结果精确到1千克)?(2)第几区内的火山灰总重量最大?
本题共有2个小题,每小题满分各7分.如图,在四棱锥中,底面为直角梯形,,垂直于底面,,分别为的中点. (1)求证:;(2)求与平面所成的角.
本题共有2个小题,第1小题满分8分,第2小题满分6分.已知函数, .(1)若,求函数的值;(2)求函数的值域.
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分8分,第3小题满分7分.已知抛物线(且为常数),为其焦点.(1)写出焦点的坐标;(2)过点的直线与抛物线相交于两点,且,求直线的斜率;(3)若线段是过抛物线焦点的两条动弦,且满足,如图所示.求四边形面积的最小值.
(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分6分.已知数列满足,,是数列的前项和,且().(1)求实数的值;(2)求数列的通项公式;(3)对于数列,若存在常数M,使(),且,则M叫做数列的“上渐近值”.若,(,),记为数列的前项和,求数列的上渐近值.