(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分8分,第3小题满分7分.已知抛物线(且为常数),为其焦点.(1)写出焦点的坐标;(2)过点的直线与抛物线相交于两点,且,求直线的斜率;(3)若线段是过抛物线焦点的两条动弦,且满足,如图所示.求四边形面积的最小值.
(12分)已知各项均为正数的数列的前n项和为,且成等差数列. (1)求数列的通项公式; (2)若,设求数列的前项和.
设函数,其中向量, (1)求的最小正周期与单调减区间; (2)在△ABC中,分别是角A、B、C的对边,已知,△ABC的面积为,求的值。
已知一动圆与圆外切,同时与圆内切. (1)求动圆圆心的轨迹方程,并说明它是什么样的曲线; (2)直线与M的轨迹相交于不同的两点、,求的中点的坐标; (3)求(2)中△OPQ的面积(O为坐标原点).
已知双曲线的中心在坐标原点,焦点在x轴上,渐近线方程为,且经过点,设是双曲线的两个焦点,点在双曲线上,且=64. (1)求双曲线的方程; (2)求.
已知抛物线以坐标轴为对称轴,原点为顶点,开口向上,且过圆的圆心. (1)求此抛物线的方程; (2)在(1)中所求抛物线上找一点,使这点到直线的距离最短,并求距离的最小值.