(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分6分.已知数列满足,,是数列的前项和,且().(1)求实数的值;(2)求数列的通项公式;(3)对于数列,若存在常数M,使(),且,则M叫做数列的“上渐近值”.若,(,),记为数列的前项和,求数列的上渐近值.
设函数且。 (Ⅰ)求的解析式及定义域。 (Ⅱ)求的值域。
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。 (Ⅰ)证明:面面; (Ⅱ)求与所成角的余弦值; (Ⅲ)求面与面所成二面角的余弦值。
已知函数在内有极值,求实数的范围。
设,(为实数且是虚数单位),求函数的值域。
设函数且。 (Ⅰ)求的解析式及定义域。(Ⅱ)求的值域。