在平面直角坐标系中, 曲线与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线交于A,B两点,且求的值.
已知以为首项的数列满足:(1)若,求证:; (2)若,求使对任意正整数n都成立的与.
给定圆:及抛物线:,过圆心作直线,此直线与上述两曲线的四个交点,自上而下顺次记为,如果线段的长按此顺序构成一个等差数列,求直线的方程.
有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定.大桥上的车距与车速和车长的关系满足:(为正的常数),假定车身长为,当车速为时,车距为2.66个车身长.写出车距关于车速的函数关系式;应规定怎样的车速,才能使大桥上每小时通过的车辆最多?
如图,四边形为矩形,平面⊥平面,,为上的一点,且⊥平面. (1)求证:⊥;(2)求证:∥平面.
在锐角中,角的对边分别为,已知(1)求角;(2)若,求面积的最大值.