(本小题满分10分)已知直线l的方程为3x+4y-12="0," 求直线m的方程, 使得: (1)m与l平行, 且过点(-1,3) ;(2) m与l垂直, 且m与两轴围成的三角形面积为4.
(本题满分14分) 已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0} (1)若A∩B=[1,3],求实数m的值; (2)若都有,求实数m的取值范围.
如图,从椭圆上一点向轴作垂线,恰好通过椭圆的左焦点,且它的长轴端点及短轴端点的连线平行于, (1)求椭圆的离心率; (2)设是椭圆上任意一点,是右焦点,求的取值范围; (3)设是椭圆上一点,当时,延长与椭圆交于另一点,若的面积为,求此时的椭圆方程。
如图,在底面是矩形的四棱锥中,,. (1)求证:平面; (2)若为的中点,求异面直线与所成角的余弦值; (3)在上是否存在一点,使得到平面的距离为1?若存在,求出,若不存在,请说明理由。
若动点到定点的距离比到直线距离小1,求点的轨迹方程。
已知正方体,是底面对角线的交点, (1)求证://面; (2)求二面角的正切值。