如图1,,是某地一个湖泊的两条互相垂直的湖堤,线段和曲线段分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥上某点分别修建与,平行的栈桥、,且以、为边建一个跨越水面的三角形观光平台.建立如图2所示的直角坐标系,测得线段的方程是,曲线段的方程是,设点的坐标为,记.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度)(1)求的取值范围;(2)试写出三角形观光平台面积关于的函数解析式,并求出该面积的最小值
(本小题满分14分) 已知函数. (I) 若且函数为奇函数,求实数; (II) 若试判断函数的单调性; (III) 当,,时,求函数的对称轴或对称中心.
(本小题满分12分) 设椭圆:的焦点分别为、,抛物线:的准线与轴的交点为,且. (I)求的值及椭圆的方程; (II)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图), 求四边形面积的最大值和最小值.
本小题满分12分) 已知数列满足+=4n-3(n∈). (I)若=2,求数列的前n项和; (II)若对任意n∈,都有≥5成立,求为偶数时,的取值范围.
(本小题满分12分) 张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,. (Ⅰ)若走L1路线,求最多遇到1次红灯的概率; (Ⅱ)若走L2路线,求遇到红灯次数的数学期望; (Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生分析上述两条路线中,选择 哪条上班路线更好些,并说明理由.
(本小题满分12分) 如图,四边形是直角梯形,∠=90°,∥,=1,=2,又=1,∠=120°,⊥,直线与直线所成的角为60°. (Ⅰ)求证:平面⊥平面; (Ⅱ)求二面角的余弦值.