如图1,,是某地一个湖泊的两条互相垂直的湖堤,线段和曲线段分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥上某点分别修建与,平行的栈桥、,且以、为边建一个跨越水面的三角形观光平台.建立如图2所示的直角坐标系,测得线段的方程是,曲线段的方程是,设点的坐标为,记.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度)(1)求的取值范围;(2)试写出三角形观光平台面积关于的函数解析式,并求出该面积的最小值
已知函数,设曲线在点处的切线为,若与圆相切,求的值.
(本小题满分12分) 已知函数在其定义域上满足. (1)函数的图象是否是中心对称图形?若是,请指出其对称中心(不证明); (2)当时,求x的取值范围; (3)若,数列满足,那么: ①若,正整数N满足时,对所有适合上述条件的数列,恒成立,求最小的N; ②若,求证:.
(本小题满分12分) 如图,设是椭圆的左焦点,直线为对应的准线,直线与轴交于点,为椭圆的长轴,已知,且. (1)求椭圆的标准方程; (2)求证:对于任意的割线,恒有; (3)求三角形△ABF面积的最大值.
(本小题满分12分) 如图,在边长为a的正方体中,M、N、P、Q分别为AD、CD、、的中点. (1)求点P到平面MNQ的距离; (2)求直线PN与平面MPQ所成角的正弦值.
(本小题满分13分) 如图PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB,PD的中点. (1)求证:AF//平面PCE; (2)若PA=AD且AD=2,CD=3,求P—CE—A的正切值.