(本小题满分12分)某工厂家具车间造A,B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A,B型桌子分别需要1 h和2 h,漆工油漆一张A,B型桌子分别需要3 h和1 h;又知木工、漆工每天工作分别不得超过8 h和9 h,而工厂造一张A,B型桌子分别获利润2千元和3千元,试问:工厂每天应生产A,B型桌子各多少张,才能获得最大利润?
设椭圆方程为,过原点且倾斜角为的两条直线分别交椭圆于A、C和B、D两点.(1)用表示四边形ABCD的面积S;(2)当时,求S的最大值.
若直线y=x+t与椭圆相交于A、B两点,当t变化时,求|AB|的最大值.
求经过点P(1,1),以y轴为准线,离心率为的椭圆的中心的轨迹方程
求椭圆为参数)的准线方程
已知圆的参数方程(1)设时对应的点这P,求直线OP的倾斜角;(2)若此圆经过点(m,1),求m的值,其中;(3)求圆上点到直线距离的最值.