己知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线,与椭圆C相交于A、B两点.(1)求椭圆C的方程:(2)求的取值范围;(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
如图,圆柱内有一个三棱柱,三棱柱的底面在圆柱底面内,并且底面是正三角形,如果圆柱的体积是,底面直径与母线长相等,那么三棱柱的体积是多少?
如图,已知点是平行四边形所在平面外的一点,、分别是、上的点且,求证:平面.
已知圆,问是否存在斜率为的直线,使以被圆截得的弦为直径的圆经过原点.若存在,写出直线的方程;若不存在,说明理由.
平行四边形的两邻边所在直线的方程为及,对角线的交点是,求另两边所在直线的方程.
设a、b、c均为实数,求证:++≥++.