己知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线,与椭圆C相交于A、B两点.(1)求椭圆C的方程:(2)求的取值范围;(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
如图,已知平面内一动点到两个定点、的距离之和为,线段的长为.(1)求动点的轨迹;(2)当时,过点作直线与轨迹交于、两点,且点在线段的上方,线段的垂直平分线为①求的面积的最大值;②轨迹上是否存在除、外的两点、关于直线对称,请说明理由.
某人沿一条折线段组成的小路前进,从到,方位角(从正北方向顺时针转到方向所成的角)是,距离是3km;从到,方位角是110°,距离是3km;从到,方位角是140°,距离是()km.试画出大致示意图,并计算出从A到D的方位角和距离(结果保留根号).
已知函数,,.(1)若,试判断并用定义证明函数的单调性;(2)当时,求证函数存在反函数.
如图,在直三棱柱中,,.若为的中点,求直线与平面所成的角.
已知函数.(1)求函数的单调区间和极值;(2)当,且时,证明:.