已知圆,直线(1)求证:对,直线与圆总有两个不同的交点A、B;(2)求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;
已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(1)求椭圆的方程;(2)设,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点;(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.
已知关于x的绝对值方程|x2+ax+b|=2,其中a,b∈R.(1)当a,b满足什么条件时,方程的解集M中恰有3个元素?(2)在条件(1)下,试求以方程解集M中的元素为边长的三角形,恰好为直角三角形的充要条件.
已知中心在原点,焦点在x轴上的椭圆C的离心率为 ,且经过点M.(1)求椭圆C的方程;(2)是否存在过点P(2,1)的直线l1与椭圆C相交于不同的两点A,B,满足·=2?若存在,求出直线l1的方程;若不存在,请说明理由.
从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,每次取出后不放回,连续取两次.(1)求取出的两件产品中恰有一件次品的概率;(2)如果将“每次取出后不放回”这一条件换成“每次取出后放回”,则取出的两件产品中恰有一件次品的概率是多少?
设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.