如图,用同样规格的规格黑白两色正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n个图中,每一横行共有_______块瓷砖,每竖行共有_______块瓷砖(均用含n的代数式表示);(2)设铺设地面所用的瓷砖总块数y,写出y与n的函数关系式(不写n的取值范围);(3)按上述铺设方案,铺一块这样的地面共有528块瓷砖,求此时n的值.
如图,已知O是平面直角坐标系的原点,半径为1的⊙B经过点O,且与x、y 轴分别交于点A、C,点A的坐标为(-,0),AC的延长线与⊙B的切线OD 交于点D. (1)求OC的长和∠CAO的度数; (2)求点D的坐标; (3)求过点A,O,D三点的抛物线的解析式; (4)在(3)中,点P是抛物线上的一点,试确定点P的位置,使得△AOP的 面积与△AOC的面积相等.
在△ABC中,BC=6,AC=4,∠C=45o,在BC上有一动点P,过P作PD∥BA与AC相交于点D,连结AP,设BP=x,△APD的面积为y. (1)求y与x之间的函数关系式,并指出自变量x的取值范围; (2)是否存在点P,使△APD的面积最大?若存在,求出BP的长,并求出△APD面积的最大值.
一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:
(1)用含x,y的式子表示购进C型手机的部数; (2)求出y与x之间的函数关系式; (3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元. ①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用) ②求出预估利润的最大值,并写出此时购进三款手机各多少部.
如图,已知∠MON=90º,等边△ABC的一个顶点A是射线OM上的一定点,顶点B与点O重合,顶点C在∠MON内部. (1)当顶点B在射线ON上移动到B1时,连结AB1,请在∠MON内部作出以AB1为边的等边三角形AB1C1(保留作图痕迹,不写作法和证明); (2)设AB1与OC交于点Q,AC的延长线与B1C1交于点D.求证: (3)连结CC1,试猜想∠ACC1为多少度?并证明你的猜想.
某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案: (1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天; (3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成. 试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.