(本小题满分12分)如图所示,四棱锥中,底面为平行四边形,,,平面.(Ⅰ)证明:平面平面;(Ⅱ)在中,,点在上且,求三棱锥的体积.
(1)已知x>0,y>0,且+=1,求x+y的最小值; (2)已知x<,求函数y=4x-2+的最大值; (3)若x,y∈(0,+∞)且2x+8y-xy=0,求x+y的最小值.
已知x>0,y>0,z>0. 求证:≥8.
某工厂生产甲、乙两种产品,计划每天每种产品的生产量不少于15吨,已知生产甲产品1吨,需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨,需煤4吨,电力5千瓦时,劳力10个;甲产品每吨的利润为7万元,乙产品每吨的利润为12万元;但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天生产甲、乙两种产品各多少吨,才能使利润总额达到最大?
已知函数f(x)=ax2+a2x+2b-a3,当x∈(-2,6)时,其值为正,而当x∈(-∞,-2)∪(6,+∞)时,其值为负. (1)求实数a,b的值及函数f(x)的表达式; (2)设F(x)=-f(x)+4(k+1)x+2(6k-1),问k取何值时,函数F(x)的值恒为负值?
函数f(x)=x2+ax+3. (1)当x∈R时,f(x)≥a恒成立,求a的取值范围. (2)当x∈[-2,2]时,f(x)≥a恒成立,求a的取值范围.