(本小题满分12分)节能减排是现代生活的追求。长沙地区某一天的温度(单位:)随时间(单位:小时)的变化近似满足函数关系:,且早上8时的温度为,.(Ⅰ)求函数的解析式,并判断这一天的最高温度是多少?出现在何时?(Ⅱ)某通宵营业的超市,为节约能源和开支,在环境温度超过时,才开启中央空调降温,否则关闭中央空调,问中央空调应在何时开启?何时关闭?
在中,角、、所对的边分别是、、, 向量,且与共线.(1)求角的大小; (2)设,求的最大值及此时角的大小.
在△ABC中,角A,B,C所对的边分别为a,b,c, cosC+(cosA-sinA)cosB=0.(1)求角B的大小;(2)若a+c=1,求b的取值范围
已知,直线, 相交于点P,交y轴于点A,交x轴于点B(1)证明:;(2)用m表示四边形OAPB的面积S,并求出S的最大值;(3)设S=" f" (m), 求的单调区间.
若 a > 0 , b > 0 且 1 a + 1 b = a b .
(I)求 a 3 + b 3 的最小值; (II)是否存在 a , b ,使得 2 a + 3 b = 6 ?并说明理由.
已知曲线,直线(t为参数) (1)写出曲线的参数方程,直线的普通方程;
(2)过曲线上任意一点作与夹角为30°的直线,交于点A,求的最大值与最小值.