(本小题满分12分)节能减排是现代生活的追求。长沙地区某一天的温度(单位:)随时间(单位:小时)的变化近似满足函数关系:,且早上8时的温度为,.(Ⅰ)求函数的解析式,并判断这一天的最高温度是多少?出现在何时?(Ⅱ)某通宵营业的超市,为节约能源和开支,在环境温度超过时,才开启中央空调降温,否则关闭中央空调,问中央空调应在何时开启?何时关闭?
等比数列中,已知. (1)求数列的通项公式; (2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和。
已知函数 (1)求函数的单调区间. (2)若方程有4个不同的实根,求的范围? (3)是否存在正数,使得关于的方程有两个不相等的实根?如果存在,求b满足的条件,如果不存在,说明理由.
已知椭圆C:()的短轴长为2,离心率为 (1)求椭圆C的方程 (2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(为坐标原点),当时,求实数的取值范围?
某种食品是经过、、三道工序加工而成的,、、工序的产品合格率分别为、、.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场. (1)正式生产前先试生产袋食品,求这2袋食品都为废品的概率; (2)设为加工工序中产品合格的次数,求的分布列和数学期望.
如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,完成以下各小题: (1)求两点间的距离; (2)证明:平面; (3)求直线与平面所成角的正弦值.