(本小题满分13分)已知为常数,在处的切线方程为.(Ⅰ)求的单调区间;(Ⅱ)若任意实数,使得对任意的上恒有成立,求实数的取值范围;(Ⅲ)求证:对任意正整数,有.
(本小题满分12分)已知为等差数列,++=105,=99,表示的前项和,问n取什么值最大。
(本小题满分12分)已知函数,(Ⅰ)求的极值(Ⅱ)若在上恒成立,求的取值范围(Ⅲ)已知,且,求证
(本小题满分12分)已知函数是奇函数,并且函数的图象经过点(1,3).(Ⅰ)求实数的值;(Ⅱ)求函数的值域.
(本小题满分12分已知f(x)是实数集R上的函数,且对任意xR,f(x)=f(x+1)+f(x-1)恒成立.(Ⅰ)求证:f(x)是周期函数.(Ⅱ)已知f(-4)=2,求f(2012).
(本小题满分12分)盒子内有大小相同的9个球,其中2个红色小球,3个白色小球,4个黑色小球,规定取出1红色小球得到1分, 取出1白色小球得到0分, 取出1个黑色小球得到-1分,现从盒子中任取3个小球。(Ⅰ)求取出的3个球颜色互不相同的概率;(Ⅱ)求取出的3个球得分之和恰好为1分的概率;(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列及数学期望.