(年贵州省贵阳市)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点. (1)a 0, 0(填“>”或“<”); (2)若该抛物线关于直线x=2对称,求抛物线的函数表达式; (3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
先化简,再求值:,其中
如图,从顶点A出发,沿着边长为1的正方形的四个顶点依次跳舞,舞步长为1.第一次顺时针移动1步,第二次逆时针移动2步,第三次顺时针移动3步,……以此类推. (1)移动4次后到达何处?(直接给出答案) (2)移动2012次后到达何处?
计算 (1)(2)因式分解:
如图,已知抛物线交x轴的正半轴于点A,交y轴于点B.求直线AB的解析式;设P(x,y)(x>0)是直线y = x上的一点,Q是OP 的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.
如图(1),在□ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA。判断△APB是什么三角形?证明你的结论;比较DP与PC的大小;如图(2)以AB为直径作半圆O,交AD于点E,连结BE与AP交于点F,若AD=5cm,AP=8cm,求证△AEF∽△APB,并求tan∠AFE的值。