(崇左)如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A、B两点.(1)则点A、B、C的坐标分别是A(__,__),B(__,__),C(__,__);(2)设经过A、B两点的抛物线解析式为,它的顶点为F,求证:直线FA与⊙M相切;(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.
解方程组.
在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.现测得AC=30m,BC=70m,∠CAB=120°,请计算A,B两个凉亭之间的距离.
如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q 作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC的距离;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使△PQR是以PQ为一腰的等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由
如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双曲线的一个交点,过点C作 CD⊥y轴,垂足为D,且△BCD的面积为1.(1)求双曲线的解析式与直线AB的解析式:(2)若在y轴上有一点E,使得以E、A、B为顶点的三角形与△BCD相似,求点E的坐标.
现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上,测得∠a=32°.(1)求矩形图案的面积:(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多一共能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)