已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB ,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.
如图1,为半圆的直径,点为圆心,为半圆的切线,过半圆上的点作交于点,连接.
(1)连接,若,求证:是半圆的切线;
(2)如图2,当线段与半圆交于点时,连接,,判断和的数量关系,并证明你的结论.
某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:
周一至周五英语听力训练人数统计表
年级
参加英语听力训练人数
周一
周二
周三
周四
周五
七年级
15
20
30
八年级
24
26
合计
35
44
51
60
(1)填空: ;
(2)根据上述统计图表完成下表中的相关统计量:
平均训练时间的中位数
参加英语听力训练人数的方差
34
14.4
(3)请你利用上述统计图表对七、八年级英语听力训练情况写出两条合理的评价;
(4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.
如图,在平面直角坐标系中,点,的坐标分别为,,,,连接,以为边向上作等边三角形.
(1)求点的坐标;
(2)求线段所在直线的解析式.
为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母,,依次表示这三首歌曲).比赛时,将,,这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是 ;
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
在中,,点在以为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).
(1)在图1中作弦,使;
(2)在图2中以为边作一个的圆周角.