(广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线顶点E在直线l上.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.
已知关于的一元二次方程x2-4x+k+1=0 (1)若=-1是方程的一个根,求k值和方程的另一根; (2)设x1,x2是关于x的方程x2-4x+k+1=0的两个实数根,是否存在实数k,使得x1x2>x1+x2成立?请说明理由.
如图所示,是⊙O的一条弦,,垂足为,交⊙O于点,点在⊙O上. (1)若,求的度数; (2)若,,求的长.
解下列方程 (1)x2-5x-6=0 (2)(x+1)(x-1)=2x.
如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E. (1)求证:⊙D与边BC也相切; (2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF.若AB=,求图中阴影部分的面积(结果保留π); (3)假设⊙D的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动一周,当△MDF与△ABD的面积之比为时,求动点M经过的弧长(结果用含r 的式子表示,保留π).
随着人民生活水平的不断提高,大丰区家庭轿车的拥有量逐年增加.据统计,怡景小区2012年底拥有家庭轿车144辆,2014年底家庭轿车的拥有量达到196辆.2014年底小区拥有室内车位和露天车位共180个.假设该小区2012年底到2016年底家庭轿车拥有量的年平均增长率都相同. (1)估计该小区到2015年底家庭轿车将达到多少辆?(结果四舍五入取整数) (2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍.在投资款恰好用完的情况下求该小区可建两种车位各多少个?试写出所有可能的方案.并判断有没有方案能够满足2016年底小区所有轿车同时停车的需求?