(绵阳)如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于点D,连接DC,DA,OA,OC,四边形OADC为平行四边形.(1)求证:△BOC≌△CDA;(2)若AB=2,求阴影部分的面积.
如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB。(1)求证:BC为⊙O的切线;(2)如图②,连接AE,AE的延长线与BC的延长线交于点G。若,求线段BC和EG的长。
某汽车租赁公司拥有20辆汽车。据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元。设公司每日租出x辆车时,日收益为y元。(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为 元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?
如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E。(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,求BE的长。
某学生参加社会实践活动,在景点P处测得景点B位于南偏东方向,然后沿北偏东方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离。
有两个可以自由转动的质地均匀转盘都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,如图所示,转动转盘,两个转盘停止后观察并记录两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)。(1)用列表法或画树形图法求出同时转动两个转盘一次的所有可能结果;(2)同时转动两个转盘一次,求“记录的两个数字之和为7”的概率。