某汽车租赁公司拥有20辆汽车。据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元。设公司每日租出x辆车时,日收益为y元。(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为 元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?
(1)计算:﹣52﹣+(﹣)﹣2+π0;(2)先化简,再求值:a(2﹣a)﹣(1+a)(1﹣a),其中a=.
计算:(1)()﹣1﹣+(5﹣π)0(2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)
已知抛物线y=3ax2+2bx+c (1)若a=b=1,c=-1求该抛物线与x轴的交点坐标;(2)若a=,c=2+b且抛物线在区间上的最小值是-3,求b的值;(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.
如图1,在矩形ABCD中,AB=4,AD=2,点P是边AB上的一个动点(不与点A、点B重合),点Q在边AD上,将△CBP和△QAP分别沿PC、PQ折叠,使B点与E点重合,A点与F点重合,且P、E、F三点共线.(1)若点E平分线段PF,则此时AQ的长为多少?(2)若线段CE与线段QF所在的平行直线之间的距离为2,则此时AP的长为多少?(3)在“线段CE”、“线段QF”、“点A”这三者中,是否存在两个在同一条直线上的情况?若存在,求出此时AP的长;若不存在,请说明理由.
如图,在平行四边形ABCD中,E为BC边上的一点,且AE与DE分别平分和(1)求证:;(2)设以AD为直径的半圆交AB于F,连结DF交AE于G,已知CD=5,AE=8.①求BC的长;②求值.