(成都)(本小题满分10分)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.
如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1)、B(1,﹣4)、C(3,﹣2). (1)△ABC绕原点O逆时针旋转90°,画出旋转后得到的△A1B1C1,并求边AC在旋转过程中扫过的图形面积; (2)以原点O为位似中心,位似比为1:2,在y轴的右侧,画出△ABC放大后的图形△A2B2C2.如果点D(a,b)在线段AB上,那么请直接写出点D的对应点D2的坐标.
(1)计算:﹣2sin60°+|-|; (2)解方程:x2+4x﹣1=0.
每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的新机器可选,其中每台的价格、工作量如下表.
经调查:购买一台甲型机器比购买一台乙型机器多2万元,购买2台甲型机器比购买3台乙型机器少6万元. (1)求a、b的值; (2)若该公司购买新机器的资金不能超过110万元,请问该公司有几种购买方案? (3)在(2)的条件下,若公司要求每月的产量不低于2040吨,请你为该公司设计一种最省钱的购买方案.
如图,在平面直角坐标系中,长方形ABCD的边BC∥x轴,如果A点坐标是(﹣1,2),C点坐标是(3,﹣2). (1)直接写出B点和D点的坐标B();D(). (2)将这个长方形先向右平移1个单位长度长度,再向下平移个单位长度,得到长方形A1B1C1D1,请你写出平移后四个顶点的坐标; (3)如果Q点以每秒个单位长度的速度在长方形ABCD的边上从A出到到C点停止,沿着A﹣D﹣C的路径运动,那么当Q点的运动时间分别是1秒,4秒时,△BCQ的面积各是多少?请你分别求出来.
某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题: (1)该校学生报名总人数有多少人? (2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几? (3)频数分布直方图补充完整.