如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴相交于点C;直线l的解析式为y=x+4,与x轴相交于点D;以C为顶点的抛物线经过点B.(1)求抛物线的解析式; (2)判断直线l与⊙E的位置关系,并说明理由;(3) 动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.
已知:如图,是⊙O的直径,点是上任意一点,过点作弦点是上任一点,连结交于连结AC、CF、BD、OD. (1)求证:;(2)猜想:与的数量关系,并证明你的猜想; (3)试探究:当点位于何处时,△的面积与△的面积之比为1:2?并加以证明.
已知二次函数(是常数,且).(1)证明:不论m取何值时,该二次函数图象总与轴有两个交点;(2)设与轴两个交点的横坐标分别为,(其中>),若是关于的函数,且,结合函数的图象回答:当自变量m的取值满足什么条件时,≤2.
密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.
已知:如图,⊙O的直径AB与弦CD相交于E,, BF⊥AB与弦AD的延长线相交于点F.(1)求证:CD∥BF;(2)连结BC,若,,求⊙O的半径 及弦CD的长.
如图,小磊周末到公园放风筝,风筝飞到处时的线长为20米,此时小磊正好站在A处,牵引底端离地面1.5米.假设测得,求此时风筝离地面的大约高度(结果精确到1米,参考数据:,).