(·辽宁葫芦岛)在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.
如图,□ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点.求证:BE=DF.
某学校抽查了某班级某月10天的用电量,数据如下表(单位:度):
(1)求这个班级平均每天的用电量;(2)已知该校共有20个班级,该月共计30天,试估计该校该月的用电量.
已知:正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.
某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件,且生产乙种零件的个数不超过甲种零件个数的一半.(1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;(2)求自变量x的取值范围;(3)怎样安排生产,每天获得的利润最大,最大利润是多少?
先仔细阅读材料,再尝试解决问题:完全平方公式x2±2xy+y2=(x±y)2及(x±y)2的值恒为非负数的特点在数学学习中有着广泛的应用,比如探求多项式2x2+12x﹣4的最大(小)值时,我们可以这样处理:解:原式=2(x2+6x﹣2)=2(x2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x取什么数,都有(x+3)2的值为非负数所以(x+3)2的最小值为0,此时x=﹣3进而2(x+3)2﹣22的最小值是2×0﹣22=﹣22所以当x=﹣3时,原多项式的最小值是﹣22解决问题:请根据上面的解题思路,探求多项式3x2﹣6x+12的最小值是多少,并写出对应的x的取值.