(·辽宁营口)【问题探究】 (1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由. 【深入探究】 (2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45º,求BD的长. (3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.
如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面 A , B 两个探测点探测到地下 C 处有生命迹象.已知 A , B 两点相距8米,探测线与地面的夹角分别是 30 ° 和 45 ° ,试确定生命所在点 C 的深度(结果保留根号).
为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.
(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为 ;
(2)请把图2(条形统计图)补充完整;
(3)该校学生共600人,则参加棋类活动的人数约为 ;
(4)该班参加舞蹈类活动的4位同学中,有1位男生(用 E 表示)和3位女生(分别用 F , G , H 表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.
如图,在 ▱ ABCD 中,点 E 是 AB 边的中点, DE 的延长线与 CB 的延长线交于点 F .
求证: BC = BF .
如图,已知抛物线 y = − x 2 + bx + c 与 y 轴相交于点 A ( 0 , 3 ) ,与 x 正半轴相交于点 B ,对称轴是直线 x = 1
(1)求此抛物线的解析式以及点 B 的坐标.
(2)动点 M 从点 O 出发,以每秒2个单位长度的速度沿 x 轴正方向运动,同时动点 N 从点 O 出发,以每秒3个单位长度的速度沿 y 轴正方向运动,当 N 点到达 A 点时, M 、 N 同时停止运动.过动点 M 作 x 轴的垂线交线段 AB 于点 Q ,交抛物线于点 P ,设运动的时间为 t 秒.
①当 t 为何值时,四边形 OMPN 为矩形.
②当 t > 0 时, ΔBOQ 能否为等腰三角形?若能,求出 t 的值;若不能,请说明理由.
如图,已知 AB 是 ⊙ O 的直径,弦 CD 与直径 AB 相交于点 F .点 E 在 ⊙ O 外,作直线 AE ,且 ∠ EAC = ∠ D .
(1)求证:直线 AE 是 ⊙ O 的切线.
(2)若 BC = 4 , cos ∠ BAD = 3 4 , CF = 10 3 ,求 BF 的长.