已知椭圆的左焦点为,右焦点为,离心率.过的直线交椭圆于、两点,且的周长为.(1)求椭圆的方程;(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点.求证:以为直径的圆恒过一定点.并求出点的坐标.
(10分)将一颗骰子(它的六个面分别标有点数1,2,3,4,5,6)先后抛掷两次,观察向上的点数,求:两数之积是6的倍数的概率;
(10分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出了频率分布直方图(如上图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相同数字的概率;(Ⅱ)求取出的两个球上标号之积能被3整除的概率.
某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段,…后画出如下频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分.
设数列。(I) 把算法流程图补充完整:①处的语句应为 ;②处的语句应为 ;(Ⅱ) 虚框内的逻辑结构为 ;(Ⅲ) 根据流程图写出程序: