(本小题满分12分)某企业为解决困难职工的住房问题,决定分批建设保障性住房供给困难职工,首批计划用100万元购买一块土地,该土地可以建造每层1000平方米的楼房一幢,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元,已知建筑第1层楼房时,每平方米的建筑费用为920元.为了使该幢楼房每平方米的平均费用最低(费用包括建筑费用和购地费用),应把楼房建成几层?此时平均费用为每平方米多少万元?
已知中, ,, 分别为角 ,, 所对的边,. (Ⅰ)求的值; (Ⅱ)若 的面积为,,求 、的长.
(本小题满分14分)已知函数和.(Ⅰ)若函数在区间不单调,求实数的取值范围;(Ⅱ)当时,不等式恒成立,求实数的最大值.
(本小题满分15分)已知椭圆的左右焦点,离心率为,双曲线方程为,直线与双曲线的交点为且.(Ⅰ)求椭圆与双曲线的方程;(Ⅱ)过点的直线与椭圆交于两点,交双曲线与两点,当(为椭圆的左焦点)的内切圆的面积取最大值时,求的面积.
(本小题满分15分)如图,在三棱锥中,⊥平面,,,,,分别是,,,的中点,,与交于点,与交于点,连结.(Ⅰ)求证:;(Ⅱ)求平面与平面所成角的正弦值.
(本小题满分14分)设数列的前项和为,点在直线上.(Ⅰ)求数列的通项公式;(Ⅱ)在与之间插入个数,使这个数组成公差为的等差数列,求数列的前项和,并求使成立的正整数的最大值.