本题共有2个小题,第1小题4分,第2小题6分.已知数列的首项.(1)求证:数列为等比数列;(2) 记,若,求最大正整数.
(本小题满分14分)已知函数(1)判断的单调性并证明;(2)若满足,试确定的取值范围。(3)若函数对任意时,恒成立,求的取值范围。
(本小题满分13分)已知函数(Ⅰ)判断f(x)在上的单调性,并证明你的结论;(Ⅱ)若集合A="{y" | y=f(x),},B=[0,1], 试判断A与B的关系;
(本小题满分12分) 已知函数⑴ 若对一切实数x恒成立,求实数a的取值范围。⑵ 求在区间上的最小值的表达式。
(本小题满分12分)已知f(x)是R上的奇函数,且当x>0时,f(x)=-x2+2x+2.(1)求f(x)的解析式;(2)画出f(x)的图象,并指出f(x)的单调区间.
(本小题满分12分) 已知 (1)若a=4,求 (2)若,求a的取值范围.