已知满足:,(1)求;(2)猜想的表达式,并用数学归纳法证明你的结论
某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率.
甲、乙、丙三名射击运动员射中目标的概率分别为、a、a(0<a<1),三人各射击一次,击中目标的次数记为ξ.(1)求ξ的分布列及数学期望;(2)在概率P(ξ=i)(i=0、1、2、3)中,若P(ξ=1)的值最大,求实数a的取值范围.
某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(1)求一次抽奖中奖的概率;(2)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布.
某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同.(1)求3个学生选择了3门不同的选修课的概率;(2)求恰有2门选修课这3个学生都没有选择的概率;(3)设随机变量X为甲、乙、丙这三个学生选修数学史这门课的人数,求X的分布列.
设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.