如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数()的图象经过点D且与边BA交于点E,连接DE. (1)连接OE,若△EOA的面积为2,则k= ; (2)连接CA,DE与CA是否平行?请说明理由; (3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.
某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分) :
七年级:89,92,92,92,93,95,95,96,98,98
八年级:88,93,93,93,94,94,95,95,97,98
整理得到如下统计表:
年级
最高分
平均分
众数
方差
七年级
98
94
m
7.6
八年级
93
s 2
根据以上信息,完成下列问题:
(1)填空: m = ;
(2)求表中 s 2 的值,并判断两个年级中哪个年级成绩更稳定;
(3)七年级两名最高分选手分别记为: A 1 , A 2 ,八年级第一、第二名选手分别记为: B 1 , B 2 ,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.
如图,在平面直角坐标系中, ΔABC 为等腰直角三角形, ∠ ACB = 90 ° ,抛物线 y = − x 2 + bx + c 经过 A , B 两点,其中点 A , C 的坐标分别为 ( 1 , 0 ) , ( − 4 , 0 ) ,抛物线的顶点为点 D .
(1)求抛物线的解析式;
(2)点 E 是直角三角形 ABC 斜边 AB 上的一个动点(不与 A , B 重合),过点 E 作 x 轴的垂线,交抛物线于点 F ,当线段 FE 的长度最大时,求点 E 的坐标;
(3)在(2)的条件下,抛物线上是否存在一点 P ,使 ΔPEF 是以 EF 为直角边的直角三角形?若存在,求出所有点 P 的坐标;若不存在,请说明理由.
如图, ⊙ O 是 ΔABC 的外接圆, AB 为直径, ∠ BAC 的平分线交 ⊙ O 于点 D ,过点 D 的切线分别交 AB , AC 的延长线于 E , F ,连接 BD .
(1)求证: AF ⊥ EF ;
(2)若 AC = 6 , CF = 2 ,求 ⊙ O 的半径.
如图,在四边形 ABCD 中, AB = AD , BD 平分 ∠ ABC , AC ⊥ BD ,垂足为点 O .
(1)求证:四边形 ABCD 是菱形;
(2)若 CD = 3 , BD = 2 5 ,求四边形 ABCD 的面积.
政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的 1 4 ,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.