在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.
【原创】实数a,b,c在数轴上的位置如图所示,化简-|a+b|-|b+c|=
【改编】如图,有一个直角三角形ABC,∠ACB=90°,AC=10,BC=5,一条线段PQ=AB,P.Q两点分别在射线AC和过点A且垂直于AC的射线AX上运动,连接BQ,当ΔABC与ΔPQA全等时.BQ的长为()
如图,矩形ABCD的面积为20,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B……依此类推,则平行四边形AOn-1CnB的面积为() A.cm2 B.cm2 C.cm2 D.cm2
在平面直角坐标系中,抛物线与x轴的两个交点分别为A(-3,0),B(1,0),过顶点C作CH⊥x轴于点H. (1)a= ,b= ,顶点C的坐标为 . (2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由. (3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
如图,平面直角坐标系xOy中,一次函数y=-x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方. (1)若直线AB与有两个交点F、G. ①求∠CFE的度数; ②用含b的代数式表示FG2,并直接写出b的取值范围; (2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.