(本题8分)把下列各数在数轴上表示,并从小到大的顺序用“<”连接起来.,,0,,
如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2). (1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形. (2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形. (3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
先化简,再求值:﹣÷,其中x=4cos60°+1.
如图,抛物线交轴于点,交轴于点,已知经过点的直线的表达式为. (1)求抛物线的函数表达式及其顶点的坐标; (2)如图①,点是线段上的一个动点,其中,作直线轴,交直线于,交抛物线于,作∥轴,交直线于点,四边形为矩形.设矩形的周长为,写出与的函数关系式,并求为何值时周长最大; (3)如图②,在抛物线的对称轴上是否存在点,使点构成的三角形是以为腰的等腰三角形.若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由. 图①图②
已知,在矩形中,连接对角线,将绕点顺时针旋转得到,并将它沿直线向左平移,直线与交于点,连接,. (1)如图①,当,点平移到线段上时,线段有怎样的数量关系和位置关系?直接写出你的猜想; (2)如图②,当,点平移到线段的延长线上时,(1)中的结论是否成立,请说明理由; (3)如图③,当时,对矩形进行如已知同样的变换操作,线段有怎样的数量关系和位置关系?直接写出你的猜想. 图①图②图③
在“玉龙”自行车队的一次训练中,1号队员以高于其他队员10千米/时的速度独自前行,匀速行进一段时间后,又返回队伍,在往返过程中速度保持不变.设分开后行进的时间为(时),1号队员和其他队员行进的路程分别为(千米),并且与的函数关系如图所示: (1)1号队员折返点的坐标为,如果1号队员与其他队员经过t小时相遇,那么点的坐标为;(用含t的代数式表示) (2)求1号队员与其他队员经过几小时相遇? (3)在什么时间内,1号队员与其他队员之间的距离大于2千米?