(本小题满分12分)某厂生产一种产品的固定成本(即固定投入)为0.5万元,但每生产一百件这样的产品,需要增加可变成本(即另增加投入)0.25万元. 市场对此产品的年需求量为500件,销售的收入函数为(单位:万元),其中是产品售出的数量(单位:百件). (Ⅰ)该公司这种产品的年产量为百件,生产并销售这种产品所得到的利润为当年产量 的函数,求; (Ⅱ)当年产量是多少时,工厂所得利润最大? (Ⅲ)当年产量是多少时, 工厂才不亏本?
设函数f(x)=lnx-px+1 (1)当P>0时,若对任意x>0,恒有f(x)≤0,求P的取值范围 (2)证明:(n∈N,n≥2)
设函数f(x)=sin(x-)-2cos2x+1 (1)求f(x)的最小正周期 (2)若函数y=g(x)与f(x)的图象关于直线x=1对称,求当x∈[0,]时,y=g(x)的最大值
已知函数, (1)求在x=1处的切线斜率的取值范围; (2)求当在x=1处的切线的斜率最小时,的解析式; (3)在(Ⅱ)的条件下,是否总存在实数m,使得对任意的,总存在,使得成立?若存在,求出实数m的取值范围;若不存在,说明理由.
数列的前项和为,数列的前项的和为,为等差数列且各项均为正数,,, (Ⅰ)求证:数列是等比数列; (Ⅱ)若,,成等比数列,求.
如图,正方形和的边长均为1,且它们所在平面互相垂直,为线段的中点,为线段的中点。 (1)求证:∥面; (2)求证:平面⊥平面; (3)求直线与平面所成角的正切值.