(本小题满分12分)某厂生产一种产品的固定成本(即固定投入)为0.5万元,但每生产一百件这样的产品,需要增加可变成本(即另增加投入)0.25万元. 市场对此产品的年需求量为500件,销售的收入函数为(单位:万元),其中是产品售出的数量(单位:百件). (Ⅰ)该公司这种产品的年产量为百件,生产并销售这种产品所得到的利润为当年产量 的函数,求; (Ⅱ)当年产量是多少时,工厂所得利润最大? (Ⅲ)当年产量是多少时, 工厂才不亏本?
对于给定首项 x 0 > a 3 ( a > 0 ) ,由递推公式 x n - 1 = 1 2 ( x n + a x n ) ( n ∈ N ) 得到数列 { x n } ,对于任意的 n ∈ N ,都有 x 8 > a 3 ,用数列 { x n } 可以计算 a 3 .
(1)取 x 0 = 5 , a = 100 ,计算 x 1 , x 2 , x 3 的值(精确到0.01);归纳出 x n , x n + 1 的大小关系; (2)当 n ≥ 1 时,证明: x n - x n + 1 < 1 2 ( x n - 1 - x n ) .
(3)当 x 0 ∈ [ 5 , 10 ] 时,用数列 { x n } 计算 100 3 的近似值,要求 x n - x n + 1 < 10 - 4 ,请你估计 n ,并说明理由
定义域为 R ,且对任意实数 x 1 , x 2 都满足不等式 f ( x 1 + x 2 2 ) ≤ f ( x 1 ) + f ( x 2 ) 2 的所有函数 f ( x ) 组成的集合记为 M ,例如,函数 f ( x ) = k x + b ∈ M . (1)已知函数 f ( x ) = { x , x ≥ 0 1 2 x , x < 0 ,证明: f ( x ) ∈ M ; (2)写出一个函数 f ( x ) ,使得 f ( x ) ∉ M ,并说明理由; (3)写出一个函数 f ( x ) ∈ M ,使得数列极限 l i m n → ∞ f ( n ) n 2 = 1 , l i m n → ∞ f ( - n ) - n = 1 .
已知抛物线 F : y 2 = 4 x
(1) △ A B C 的三个顶点在抛物线 F 上,记 △ A B C 的三边 A B 、 B C 、 C A 所在的直线的斜率分别为 k A B , k B C , k C A 若A的坐标在原点,求 k A B - k B C + k C A 的值; (2)请你给出一个以 P ( 2 , 1 ) 为顶点、其余各顶点均为抛物线 F 上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由
某甜品店制作蛋筒冰淇淋,其上半部分呈半球形,下半部分呈圆锥形(如图)。现把半径为10cm的圆形蛋皮分成5个扇形,用一个扇形蛋皮围成锥形侧面(蛋皮厚度忽略不计),求该蛋筒冰淇淋的表面积和体积(精确到0.01)
已知向量 a ⇀ = ( sin 2 x - 1 , cos x ) , b ⇀ = ( 1 , 2 cos x ) ,设函数 f ( x ) = a ⇀ · b ⇀ ,求函数 f ( x ) 的最小正周期及 x ∈ 0 , π 2 时的最大值.