对于给定首项 x 0 > a 3 ( a > 0 ) ,由递推公式 x n - 1 = 1 2 ( x n + a x n ) ( n ∈ N ) 得到数列 { x n } ,对于任意的 n ∈ N ,都有 x 8 > a 3 ,用数列 { x n } 可以计算 a 3 .
(1)取 x 0 = 5 , a = 100 ,计算 x 1 , x 2 , x 3 的值(精确到0.01);归纳出 x n , x n + 1 的大小关系; (2)当 n ≥ 1 时,证明: x n - x n + 1 < 1 2 ( x n - 1 - x n ) .
(3)当 x 0 ∈ [ 5 , 10 ] 时,用数列 { x n } 计算 100 3 的近似值,要求 x n - x n + 1 < 10 - 4 ,请你估计 n ,并说明理由
一个圆环直径为m,通过金属链条、、、(、、是圆上三等分点)悬挂在处,圆环呈水平状态,并距天花板2m(如图所示),为使金属链条总长最小,的长应为
已知点是函数且)的图象上一点,等比数列的前项和为,数列的首项为 ,且前项和满足(1)求数列和的通项公式;(2)若数列{前项和为,问>的最小正整数是多少? .
已知函数 . (1)解不等式; (2)设时,有最小值为,求的值.
在锐角△中,、、分别为角、、所对的边,且(1)确定角的大小; (2)若,且△的面积为,求的值
(文)已知函数,,且在区间(2、+)上为增函数。(1)求k的取值范围。(2)若函数与的图象有三个不同的交点,求实数k的取值范围。