(本小题满分12分)如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=,求AB的长.
坐标系与参数方程在直角坐标系中,直线的参数方程为(t 为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为。(1)求圆C的直角坐标方程;(2)设圆C与直线交于点A,B,若点P的坐标为(2,),求|PA|+|PB|.
如图,△ABC内接于⊙O,AB =AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.(1)求证:△ABE≌△ACD;(2)若AB =6,BC =4,求AE.
已知函数f(x)=1n(2ax+1)+-x2-2ax(a∈R).(1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;(2)当a=时,方程f(1-x)=有实根,求实数b的最大值.
若椭圆的左、右焦点分别为F1,F2,椭圆的离心率为:2.(1)过点C(-1,0)且以向量为方向向量的直线交椭圆于不同两点A、B,若,则当△OAB的面积最大时,求椭圆的方程。(2)设M,N为椭圆上的两个动点,,过原点O作直线MN的垂线OD,垂足为D,求点D的轨迹方程.
如图所示,四面体ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.(1)求证:AD⊥BC;(2)求二面角B—AC—D的余弦值.