(本小题满分12分)如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=,求AB的长.
(本小题满分12分)如图,四棱锥的底面是正方形,⊥底面,点在棱上.(Ⅰ)求证:平面⊥平面;(Ⅱ)当且为的中点时,求与平面所成角的正弦值.
(本小题满分12分)已知各项都不相等的等差数列{an}的前六项和为60,且a6为a1和a21的等比中项.(1)求数列{an}的通项公an及前n项和Sn;(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列{}的前n项和Tn.
(本小题满分12分)在△ABC中,内角A,B,C的对边分别是,,,已知,sinA-sinC=sin(A-B). (Ⅰ)求B; (Ⅱ)若b=2,求△ABC的面积。
(本小题满分14分)如图所示,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的右侧),且|MN|=3,已知椭圆D:+=1(a>b>0)的焦距等于2|ON|,且过点(,).(1)求圆C和椭圆D的方程;(2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾斜角互补.
(本小题满分13分)已知数列的前项和为,且=,数列中,,点在直线上.(1)求数列的通项和;(2)设,求数列的前n项和,并求满足的最大正整数.