选修4一4:坐标系与参数方程在直角坐标系中,圆:=经过伸缩变换后得到曲线.以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为·(1)求曲线的直角坐标方程及直线的直角坐标方程;(2)在上求一点,使点到直线的距离最小,并求出最小距离.
某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形. (1) 求出,并猜测的表达式; (2) 求证:+++…+.
如图, 内接于⊙, 是⊙的直径, 是过点的直线, 且. (1) 求证: 是⊙的切线; (2)如果弦交于点, , , , 求.
已知不等式的解集是 (1)求实数的取值集合M; (2) 若,∈M,试比较与的大小
在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:交于A、B两点。 (1)求|AB|的长 (2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离。
已知。 (1)若不等式对任意实数恒成立,求实数的取值范围;(2)若,解不等式。