己知圆心为的圆经过点和,且圆心在直线上,求圆心为的圆的标准方程.
选修4—5:不等式选讲已知函数,,.(1)当时,若对任意恒成立,求实数的取值范围;(2)当时,求函数的最小值.
选修4—4:坐标系与参数方程极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴,曲线的极坐标方程为,曲线的参数方程为(为参数,),射线,,与曲线交于(不包括极点)三点.(1)求证:;(2)当时,两点在曲线上,求与的值.
已知函数.(1)求函数的单调区间;(2)若函数在区间上的最小值为0,求的值.(3)若对于任意,恒成立,求的取值范围.
已知抛物线的焦点为,直线与轴的交点为,与抛物线的交点为,且.已知椭圆的右焦点与抛物线的焦点重合,且离心率为.(1)求抛物线和椭圆的方程;(2)若过椭圆的右焦点的直线与椭圆交于、两点,求三角形(为坐标原点)的面积的最大值.
如图1,在中,,,是上的高,沿将折成的二面角,如图2.(1)证明:平面平面;(2)设为的中点,,求异面直线与所成的角的大小.