(本小题满分15分)对于函数,若存在,使成立,则称为的一个不动点.设函数().(Ⅰ)当,时,求的不动点;(Ⅱ)设函数的对称轴为直线,若为的不动点,且,求证:.
(本小题满分12分)已知函数,.(Ⅰ)当时,求的单调递增区间;(Ⅱ)若的图象恒在的图象的上方,求实数的取值范围.
(本小题满分12分)已知直线:交抛物线于两点,为坐标原点.(Ⅰ)求的面积;(Ⅱ)设抛物线在点处的切线交于点,求点的坐标.
(本小题满分12分)已知函数在时有极值.(Ⅰ)求的解析式;(Ⅱ)求函数在上的最大值、最小值.
(本小题满分12分)若数列的通项公式,记.(Ⅰ)计算的值;(Ⅱ)由(Ⅰ)猜想,并证明.
(本小题满分12分)已知命题p:,恒成立.命题q:使得.若“且”为真,求实数的取值范围.