(本小题满分14分)设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}是等差数列,数列{bn―2}是等比数列(n∈N*). (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)是否存在k∈N*,使?若存在,求出k,若不存在,说明理由.
已知定点A(1,0),B (2,0) .动点M满足, (1)求点M的轨迹C; (2)若过点B的直线l(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F (E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点的距离为2。 (1)求椭圆的方程; (2)斜率的直线与椭圆相交于不同的两点M,N满足,求直线l的方程。
设函数. (1)求f(x)的单调区间和极值; (2)关于的方程f(x)=a在区间上有三个根,求a的取值范围.
已知抛物线.命题p: 直线l1:与抛物线C有公共点.命题q: 直线l2:被抛物线C所截得的线段长大于2.若为假, 为真,求k的取值范围.
已知圆C过原点且与相切,且圆心C在直线上. (1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且, 求直线l的方程.