(本小题满分14分)一个口袋中装有大小相同的二个白球:,三个黑球:.(Ⅰ)若从口袋中随机地摸出一个球,求恰好是白球的概率;(Ⅱ)若从口袋中一次随机地摸出两个球,求恰好都是白球的概率.
已知函数是定义在上的偶函数,且当时,.(1)写出函数在的解析式; (2)若函数,求函数的最小值.
已知正方体中,面中心为.(1)求证:面;(2)求异面直线与所成角.
风景秀美的京娘湖畔有四棵高大的银杏树,记做、、、,欲测量、两棵树和、两棵树之间的距离,但湖岸部分地方围有铁丝网不能靠近,现在可以方便的测得、两点间的距离为米,如图,同时也能测量出,,,,则、两棵树和、两棵树之间的距离各为多少?
某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:
(1)求回归直线方程。(2)试预测广告费支出为10百万元时,销售额多大?
在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。(1)根据以上数据建立一个的列联表;(2)判断性别与休闲方式是否有关系。(本题可以参考两个分类变量x和y有关系的可信度表:)