某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:
(1)求回归直线方程。(2)试预测广告费支出为10百万元时,销售额多大?
已知函数,。 (1)求不等式的解集; (2)若不等式有解,求实数的取值范围。
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为(为参数),点Q的极坐标为。 (1)化圆C的参数方程为极坐标方程; (2)若直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线的直角坐标方程。
如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。 求:(1)⊙O的半径;(2)s1n∠BAP的值。
已知为函数图象上一点,O为坐标原点,记直线的斜率. (1)若函数在区间上存在极值,求实数m的取值范围; (2)设,若对任意恒有,求实数的取值范围.
已知椭圆:()的右焦点,右顶点,且. (1)求椭圆的标准方程; (2)若动直线:与椭圆有且只有一个交点,且与直线交于点,问:是否存在一个定点,使得.若存在,求出点坐标;若不存在,说明理由.