设A,B分别为椭圆+=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距.(1)求椭圆的方程;(2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.
(本小题满分12分) 已知△ABC中,a,b,c分别是角A,B,C的对边,A是锐角,且,·=8. (1)求bc的值; (2)求a的最小值.
(本小题满分14分) 已知函数,. (1)若函数在时取得极值,求的单调递减区间; (2)证明:对任意的x∈R,都有||≤| x |; (3)若a=2,∈[,]),,求证:…+<(n∈N*).
(本小题满分13分) 已知过椭圆C:+=1(a>b>0)右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点;又函数图象的一条对称轴的方程是. (1)求椭圆C的离心率e与直线AB的方程; (2)对于任意一点M∈C,试证:总存在角θ(θ∈R)使等式+成立.
(本小题满分12分) 已知函数,在[-1,1]上是减函数. (1)求曲线在点(1,)处的切线方程; (2)若≤在x∈[-1,1]上恒成立,求的取值范围;
(本小题满分12分) 如图,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD =90o,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E. (1)求证:PA⊥BD; (2)求二面角P—DC—B的大小;