(本小题满分14分)在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切于坐标原点.椭圆E:与圆的一个交点到椭圆E的两焦点的距离之和为.(Ⅰ)求圆和椭圆E的方程;(Ⅱ)试探究圆上是否存在异于原点的点,使到椭圆右焦点F的距离等于线段的长.若存在,请求出点的坐标;若不存在,请说明理由.
(本题10分)已知复数 (1)m取什么值时,z是实数? (2)m 取什么值时,z是纯虚数?
(本题10分)若,且,求证:
某地粮食需求量逐年上升,下表是部分统计数据:
(1)利用所给数据求年需求量与年份之间的回归直线方程=x+. (2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.
为了解高二某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为. (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; 下面的临界值表供参考: (参考公式K2=,其中n=a+b+c+d)
已知关于x的方程:x2﹣(6+i)x+9+ai=0(a∈R)有实数根b. (1)求实数a,b的值. (2)若复数z满足|﹣a﹣bi|﹣2|z|=0,求z为何值时,|z|有最小值,并求出|z|的值.