(本小题满分14分)在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切于坐标原点.椭圆E:与圆的一个交点到椭圆E的两焦点的距离之和为.(Ⅰ)求圆和椭圆E的方程;(Ⅱ)试探究圆上是否存在异于原点的点,使到椭圆右焦点F的距离等于线段的长.若存在,请求出点的坐标;若不存在,请说明理由.
设锐角△ABC的三内角A,B,C的对边分别为a,b,c,向量,,已知与共线。(Ⅰ)求角A的大小; (Ⅱ)若,,且△ABC的面积小于,求角B的取值范围。
(本题满分14分) 已知点及圆:. (Ⅰ)若直线过点且与圆心的距离为1,求直线的方程; (Ⅱ)设过直线与圆交于、两点,当时,求以为直径的圆的方程; (Ⅲ)设直线与圆交于,两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.
(本题满分12分) 如图,已知所在的平面,分别为的中点,, (Ⅰ)求证:; (Ⅱ)求证:; (Ⅲ)求三棱锥的体积.
(本题满分12分) 已知二次函数满足且. (Ⅰ)求的解析式; (Ⅱ)当时,不等式:恒成立,求实数的范围.
(本题满分12分) 如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:) (Ⅰ)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (Ⅱ)按照给出的尺寸,求该多面体的体积; (Ⅲ)在所给直观图中连结,证明:∥面