某市现有居民万人,每天有的人选择乘出租车出行,记每个人的乘车里程为,。由调查数据得到的频率分布直方图(如图)。在直方图的乘车里程分组中,可以用各组的区间中点值代表该组的各个值,乘车里程落人该区间的频率作为乘车里程取区间中点值得概率。现规定乘车里程时,乘车费用为元;当时,每超出(不足时按计算),乘车费用增加元。(Ⅰ)试估计乘客的乘车费用不超过15.2元的概率;(Ⅱ)试估计出租车公司一天的总收入是多小?(精确到万元)
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元. (1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元? (2)设一次订购量为个,零件的实际出厂单价为元.写出函数的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
已知函数; (1)若的定义域为,求实数的取值范围. (2)若的值域为,则实数的取值范围. (3)求函数的递减区间.
已知是上的奇函数,且当时,; (1)求的解析式; (2)作出函数的图象(不用列表),并指出它的增区间.
计算: (1)已知全集为,集合,,求. (2)
(本小题满分12分)定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数, (1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由; (2)若函数在上是以4为上界的有界函数,求实数的取值范围.