某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
习总书记在去年9月和10月分别提出建设“新丝绸之路经济带”和“21世纪海上丝绸之路”的战略构想,强调相关各国要打造互利共赢的“利益共同体”和共同发展繁荣的“命运共同体”.某国有企业在“一带一路” 战略合作中 ,向东南亚销售A、B两种外贸产品共6万吨.已知A种外贸产品每吨800元,B种外贸产品每吨400元.若A、B两种外贸产品销售额不低于3200万元,则至少销售A产品多少万吨?
已知:如图,点是的中点,AD=CE,CD=BE.求证:CD∥BE.
定义:两组邻边分别相等的四边形叫做筝形. (1)请写出除定义外的性质和判定猜想各一条,并从定义出发证明你的判定猜想. (2)筝型ABCD中,对角线AC,BD相交于点O. ①如图1,若BD=CO,求tan∠BCD的值. ②如图2,若∠DAC=∠BCD=72º,求AD:CD的值. (3)如图3,把△ABD沿着对角线BD翻折,A点落在对角线AC上的E点.如果△AOD中,一个内角是另一个内角的2倍,且阴影部分图形的面积等于四边形ABED的面积,直接写出的值.
如图,已知抛物线y=与x轴交于A、B两点. (1)点A的坐标是,点B的坐标是,抛物线的对称轴是直线; (2)将抛物线向上平移m个单位,与x轴交于C、D两点(点C 在点D的左边).若CD:AB=3:4,求m的值; (3)点P是(2)中平移后的抛物线上y轴右侧部分的点,直线y=2x+b(b0)与 x、y轴分别交于点E、F.若以EF为直角边的三角形PEF与△OEF相似,直接写出点P的坐标.
某工厂生产的某种产品按质量分为10个等级.第1级(最低级)产品每天能生产95件,每件利润6元.已知每提高一个级别,每件利润增加2元,但每天产量减少5件. (1)若生产第3级产品,则每天产量为件,每件利润为元; (2)若生产第x级产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数解析式; (3)若生产第x级的产品一天的总利润为1120元,求该产品的质量等级.