设,求函数的最大值和最小值.
如图,由 M 到 N 的电路中有4个元件,分别标为 T 1 , T 2 , T 3 , T 4 ,电源能通过 T 1 , T 2 , T 3 , 的概率都是 P ,电源能通过 T 4 的概率是0.9,电源能否通过各元件相互独立。已知 T 1 , T 2 , T 3 中至少有一个能通过电流的概率为0.999. (Ⅰ)求 P ; (Ⅱ)求电流能在 M 与 N 之间通过的概率.
如图,直三棱柱 A B C - A 1 B 1 C 1 中, A C = B C , A A 1 = A B , D 为 B B 1 的中点, E 为 A B 1 上的一点, A E = 3 E B 1
(Ⅰ)证明: D E 为异面直线 A B 1 与 C D 的公垂线; (Ⅱ)设异面直线 A B 1 与 C D 的夹角为45°,求二面角 A 1 - A C 1 - B 1 的大小
已知 a n 是各项均为正数的等比数列,且 a 1 + a 2 = 2 1 a 1 + 1 a 2 , a 3 + a 4 + a 5 = 64 1 a 3 + 1 a 4 + 1 a 5
(Ⅰ)求 a n 的通项公式; (Ⅱ)设 b n = a n + 1 a n 2 ,求数列 b n 的前 n 项和 T n 。
△ A B C 中, D 为边 B C 上的一点, B D = 33 , sin B = 5 13 , cos ∠ A D C = 3 5 ,求 A D .
有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:其中直径在区间[1.48,1.52]内的零件为一等品。(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率。