(本小题满分12分)某厂生产某种产品的年固定成本为万元,每生产 ()千件,需另投入成本为,当年产量不足千件时,(万元);当年产量不小于千件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产该商品能全部销售完. (1)写出年利润(万元)关于年产量(千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
(本小题共12分)如图,已知⊥平面,∥,是正三角形,,且是的中点 (1)求证:∥平面; (2)求证:平面BCE⊥平面.
设函数(1)当时,求的极值;(2)当时,求的单调区间;(3若对任意及,恒有成立,求的取值范围
(本小题共12分)已知椭圆E:的焦点坐标为(),点M(,)在椭圆E上(1)求椭圆E的方程;(2)O为坐标原点,⊙的任意一条切线与椭圆E有两个交点,且,求⊙的半径。
(本小题共12分) 在平面直角坐标系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),满足向量与向量共线,且点An(n,an) (n∈N*)都在斜率为2的同一条直线l上. 若a1=-3,b1=10 (1)求数列{an}与{ bn }的通项公式; (2)求当n取何值时△AnBnCn的面积Sn最小,并求出Sn的这个最小值。
(本小题满分12分) 已知函数,且 (1)求的最大值及最小值;(2)求的在定义域上的单调区间.