(本小题满分12分)已知一条光线从点射出,经过轴反射后,反射光线与圆相切,求反射光线所在直线的方程.
(本小题12分)已知⑴求的值; ⑵判断的奇偶性。
(本小题12分)已知集合A={x| }, B="{x|" } ,求:⑴ ⑵。
(满分14分)是首项的等比数列,且,,成等差数列,(1)求数列的通项公式;(2)若,设为数列的前项和,若≤对一切恒成立,求实数的最小值.
(本小题满分14分)某房地产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元.(Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润?(Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:①年平均利润最大时以46万元出售该楼; ②纯利润总和最大时,以10万元出售该楼,问哪种方案盈利更多?
某厂用甲、乙两种原料生产A、B两种产品,已知生产1t A产品,1t B产品分别需要的甲、乙原料数,可获得的利润数及该厂现有原料数如下表所示.问:在现有原料下,A、B产品应各生产多少才能使利润总额最大?列产品和原料关系表如下:
原料