(满分14分)是首项的等比数列,且,,成等差数列,(1)求数列的通项公式;(2)若,设为数列的前项和,若≤对一切恒成立,求实数的最小值.
如图所示的几何体中,已知平面平面,,且,,,求证:
甲、乙两篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率是. 求:(1)乙投球的命中率;(2)甲投球2次,至少命中1次的概率;(3)若甲、乙二人各投球2次,求两人共命中2次的概率
10分)如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:
一个袋中装有大小相同的黑球、白球和红球. 已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是,从中任意摸出2个球,至少得到1 个白球的概率是. 求:(1)从中任意摸出2个球,得到的都是黑球的概率;(2)袋中白球的个数
(本小题12分)已知某商品的价格(元)与需求量(件)之间的关系有如下一组数据:
(1)画出关于的散点图(2)用最小二乘法求出回归直线方程(3)计算的值,并说明回归模型拟合程度的好坏。