已知等腰三角形的周长是24 cm,一腰上的中线把三角形分成两个三角形,两个三角形的周长的差是3 cm.求等腰三角形各边的长.
如图所示,在平面直角坐标系中,抛物线 ()经过、两点,抛物线与轴交点为,其顶点为,连接,点是线段上一个动点(不与、重合),过点作轴的垂线,垂足为,连接。①求抛物线的解析式,并写出顶点的坐标;②如果点的坐标为(),的面积为,求与的函数关系式,写出自变量的取值范围,并求出的最大值;③在②的条件上,当取得最大值时,过点作的垂线,垂足为,连接,把沿直线折叠,点的对应点为,请直接写出点坐标,并判断点是否在该抛物线上;
已知:如图,在正方形中,是上一点,延长到,使,连接并延长交于.①求证:≌;②将绕点顺时针旋转得到,判断四边形是什么特殊四边形?并说明理由.
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低元。①填空:试用含的代数式分别表示第二个月的销售价格和清仓时的销售量。(结果要化简)第二个月的销售价格为_____________元;清仓时的销售量为_____________件。②如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)图1 图2(1)当x取何值时,该抛物线的最大值是多少?(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示). ① 当时,判断点P是否在直线ME上,并说明理由;② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由.
我市开发区是全国闻名的电动车生产基地,某电动车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?